Arkansas Department of Energy & Environment – Division of Environmental Quality Water Quality Management Plan Summary

Date: February 10, 2	2022 Modeling Engineer: <u>F</u>	aizan Khan	Reviewed By: <u>Shane Byrum</u>
New Permit	🔀 Revoke & Reissue	Permit	Modified Permit
Type of Discharge:	minor treated municipal was	tewater	
Facility Name:	City of Flippin – Flippin WV	VTF	
Permit No.:	AR0021717		
Design Flow:	0.35 MGD (previously 0.175	5 MGD)	
Receiving Stream:	Fallen Ash Creek, thence to	the White Rive	er
Assessment Unit (AU):	AR_11010003_002	7Q10: 0.00	06 cfs ¹
Planning Segment:	4I	County: Mar	tion

Proposed Effluent Limits in mg/l with New Design Flow of 0.35 MGD:

	CBOD ₅	TSS	NH ₃ -N	DO^2
May-October:	10	15	2	6.0
November-March:	10	15	9	6.0
April:	10	15	<mark>3.9</mark>	6.0

Current Effluent Limits in mg/l with Previous Design Flow of 0.175 MGD:

	CBOD ₅	TSS	NH ₃ -N	\mathbf{DO}^2
May-October:	10	15	2	6.0
November-March:	10	15	9	6.0
April:	10	15	4	6.0

TMDL Limits: None

Justification (Sag = Minimum Modeled Value ≠ Difference in Value):

		DO	DO	Distance	DO	DO	Distance
Reach	Length	DO WQS _C	DO Sag _C	to DO Sag _C	DO WQS _P	DO Sag _P	to DO Sag _P
No.	(miles)	(mg/L)	(mg/L)	(miles)	(mq/L)	(mg/L)	(miles)
1a	0.1	2.0	5.6	0.1	6.0	6.6	0.1
1b	0.9	5.0	5.6	0.0	6.0	6.6	0.0

Values in above table are from a modeling analysis dated February 10, 2022.

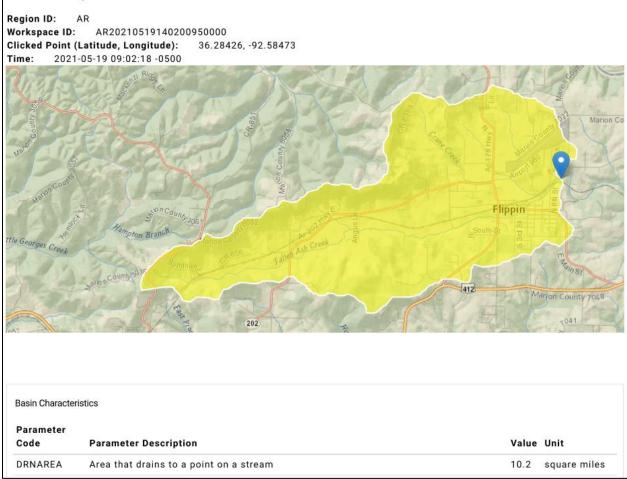
Outfall Location (Lat/Long)³: 36° 16' 59.59" N; 92° 35' 08.76" W

¹ USGS StreamStats web-based program

² DO limit is an Instantaneous Minimum.

³ The outfall coordinates were updated based on an <u>inspection report of the facility dated August 18, 2020.</u>

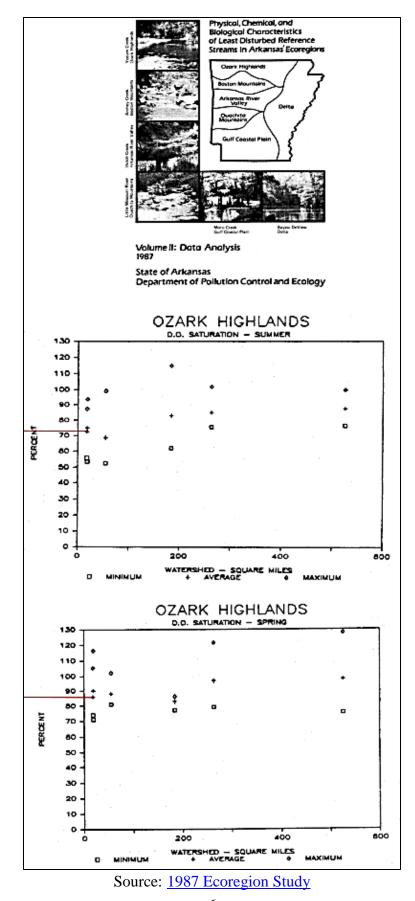
Remarks: This is for the revoke and reissue of the discharge permit for this existing facility. A new modeling analysis was performed due to proposed changes to the facility's treatment system, including an increase in design flow from 0.175 MGD to 0.35 MGD per state construction permit <u>AR0021717C</u>.


The 208 Plan is being updated to revise the facility design flow from 0.175 MGD to 0.35 MGD, and revise the monthly average NH_3 -N limit during April from 4.0 to 3.9 mg/l based on ammonia toxicity calculations shown on next page.

			Ammonia Calculations			
POTW?	Yes	(Yes or No)			COLOR KEY	
Facility Name	City of Flippin					User Inputs
Major or Minor	Minor					Calculated values
Permit Number	AR0021717					
Receiving Stream	Fallen Ash Creek		Ecoregion or River name	Ozark Highlands		
7Q10, cfs	0.006	USGSStreamStats	Watershed area (mi ²)	9.88		
0.25/0.67 multiplier	0.67		Rule 2 Chronic Toxicity C	Critieria (Instream Co	oncentration)	
Qb, cfs	0.00			AML, mg/l	DML, mg/l	
Qe, MGD	0.35	Designflow	April	3.9	3.9	
Qe, cfs	0.54		May - October	3.9	3.9	
Cb, mg/l	0.1	Model input upstream	November - March	10.3	10.3	
Allowable Effluent C	onc., mg/l					
(Qe * Ce) + (Qb* Cb) = (Qe + Qb) * IWC			Allowable Efflue	nt Conc. (Ce), mg/	
Qe	Effluent Flow			Ce = (IWC (Qe + Q))		
Ce	Allowable Effluent Concer	ntration			Monthly Avg.,mg/l	
Qb	% of Low Flow of Receiving	ng Stream		April	3.9	3.9
Cb	Background Concentratio	•		May - October	3.9	3.9
IWC	Instream Waste Concent	ration Chronic Tox	icity Criteria	November - March	10.4	10.4
Chronic Toxicity C	riteria vs. D.O. Model Li	mits				
	Monthly Average,	ma/l	Permit Limits			Permit Limits
Month	Toxicity limit	D.O. limit		Toxicity limit	erage, mg/l D.O. limit	Fermit Linnits
April	3.9	9.0	3.9	3.9	13.5	3.9
May - October	no fishery	2.0	2.0	no fishery	3.0	3.0
November - March	10.4	9.0	- 2.0 9.0	10.4	13.5	10.4
	10.4	3.0	3.0	10.4	13.5	10.4

			Ammonia Toxi	city Criteria
Minor Permits				
Fish Early Life Stages Absent - F	rimary Seaso	n (Novemb	er - March), mg	/L
Ecoregion	Temperature	pН	4-day average	30-day average
Arkansas River	14	7.6	10.3	10.3
Arkansas River Valley	14	6.7	16.7	16.7
Boston Mountains	14	6.9	15.8	15.8
Delta	14	7.1	14.7	14.7
Gulf Coastal Plains	14	6.6	17	17
Ouachita Mountains	14	7.1	14.7	14.7
Ouachita River (L. Mo. to Mouth)	14	6.7	16.7	16.7
Ozark Highlands	14	7.6	10.3	10.3
Red River	14	7.5	11.3	11.3
White River (Dam #10 Mouth)	14	7.7	9.3	9.3
Fish Early Life Stages Present -	Critical Seaso	n (April - O	ctober), mg/L	
Ecoregion	Temperature	pН	4-day average	30-day average
Arkansas River	32	7.6	3.2	3.2
Arkansas River Valley	31	6.7	5.6	5.6
Boston Mountains	31	6.9	5.3	5.3
Delta	30	7.1	5.2	5.2
Gulf Coastal Plains	30	6.6	6.1	6.1
Ouachita Mountains	30	7.1	5.2	5.2
Ouachita River (L. Mo. to Mouth)	32	6.7	5.2	5.2
Ozark Highlands	29	7.6	3.9	3.9
Red River	32	7.5	3.5	3.5
White River (Dam #10 Mouth)	32	7.7	2.9	2.9

AR00217	17 - City of Fl	ippin - Strea	mStats Rep	oort	
	AR202105191351457	79000 36.28351, -92.58597			
Set Auno		Lease to the second sec			Dit Marion Co
Hanning County		Mayou County age		Compared and American	60
ttle Georges Creek	Hampton Branch	Altern States	Artholite Freek	South	lippin B B C Fu B B C Fu B B C C Fu B C C C C C C C C C C C C C C C C C C
	ario 5 County (1939	202		[412	Marion County 7048
Basin Characteristi	ics				
Parameter Code	Parameter Description				Value Unit
DRNAREA	Area that drains to a po	int on a stream			9.88 square miles
7 Day 10 Year L	ow Flow		0	.006	ft^3/s
Statistic				Value	Unit
Probability zero	flow 7Day			0.00783	dim


AR0021717 - City of Flippin - StreamStats Report (0.1 miles downstream of outfall)

This is designated as Reach 1b in the model. This reach, 0.1 miles downstream from the Flippin outfall, signifies the point where the DO water quality standard (Rule 2.505, see below) changes from 2 mg/l to 5 mg/l during the critical season, since the watershed size increases from 9.88 mi² (at the outfall) to 10.2 mi².

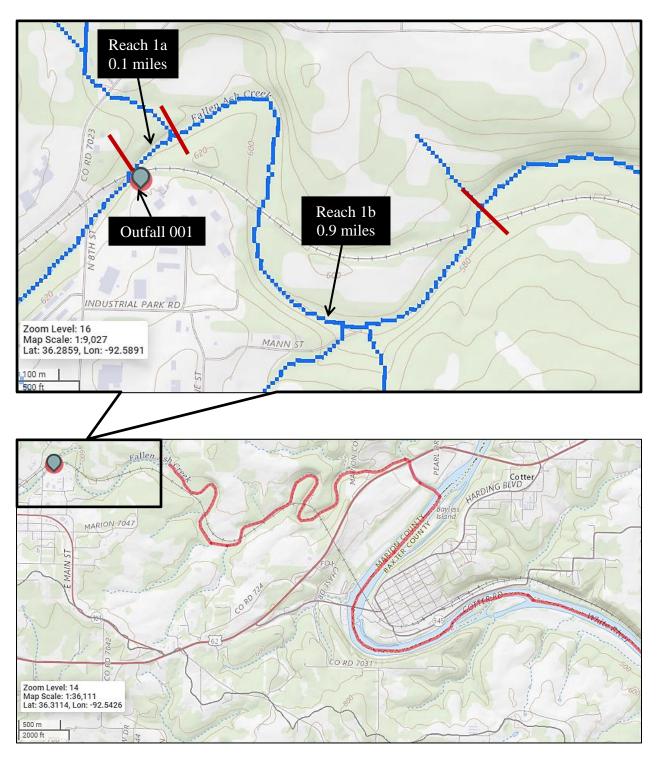
Waterbodies	Criteria	a (mg/L)
Streams	Primary	Critical
Ozark Highlands	-	
<10 mi ² watershed	6	2
10 to 100 mi ²	6	5
>100 mi ² watershed	6	6

Source: <u>Rule 2.505</u>

]	Rocky S	ubstrate	,		Applicable Ecoregions ⁶
TSS ¹	SOD ₂₀	SOD ₂₂	SOD ₂₉	SOD ₃₀	SOD ₃₁	Ozark Highlands
15^{2}	0.3	0.34	0.51	0.54	0.57	Boston Mountains
20^{2}	0.5	0.56	0.84	0.90	0.95	Ouachita Mountains
30^{2}	1.0	1.12	1.69	1.79	1.90	
45 ³	1.4	1.57	2.37	2.51	2.66	Critical Season
90^{3}	1.8	2.02	3.04	3.22	3.42	Primary Season
		Mixed S	ubstrate			
TSS ¹	SOD ₂₀	SOD ₂₂	SOD ₂₉	SOD_{30}	SOD ₃₁	
15 ²	0.4	0.45	0.68	0.72	0.76	Arkansas River Valley
20^{2}	0.7	0.79	1.18	1.25	1.33	Gulf Coastal Plain
30^{2}	1.3	1.46	2.20	2.33	2.47	Ouri Coastar I fain
45^{3}	1.6	1.80	2.70	2.87	3.04	
90 ³	1.9	2.13	3.21	3.40	3.61	
		Sandy Su	ubstrate			
TSS ¹	SOD ₂₀	SOD ₂₂	SOD ₃₀	SOD ₃₁	SOD ₃₂	Arkensee Diver Velley
15^{2}	0.5	0.56	0.90	0.95	1.01	Arkansas River Valley Gulf Coastal Plain
20^{2}	0.8	0.90	1.43	1.52	1.61	Delta
30^{2}	1.5	1.69	2.69	2.85	3.0	Delta
45^{3}	1.8	2.02	3.22	3.42	3.62	
90^{3}	2.0	2.25	3.58	3.80	4.02	

Sediment Oxygen Demand (SOD) for Various Temperatures and Ecoregion⁵

¹ Projected TSS instream after mixing.


² TSS values are from MOA with EPA found in the CPP. SOD values for rocky substrate are the lower end of range given in the MOA. SOD values for sandy substrate are the upper end of range given in the MOA.

³ These TSS concentrations are outside of the range given in the MOA, so the corresponding SOD values are estimated.

⁴ SOD values given in this table are the lower and upper ends of the recommended range. SOD values between the upper and lower values are acceptable based on nature of substrate.

- ⁵ Deviations from these rates may take place in situations of high instream dilution, which significantly reduces the impact of the benthal (sediment) deposits on oxygen consumption. In these situations, justification on a case by case basis will be provided in the documentation submitted to EPA.
- ⁶ Applicable ecoregions are based on the general characteristics of waterbodies within each ecoregion (Rocky, Gravel, or Mixed). A different substrate type may be used based on site specific observations of the particular stream in question.

Model Schematic

Source: USGS StreamStats

Model Input Data

W.S. Drainage Area (mi ²):	9.88 (Reach 1a, Fallen Ash Creek at outfall)
	10.2 (Reach 1b, Fallen Ash Creek, 0.1 miles downstream from outfall)
Ecoregion:	Ozark Highlands
Q _{DESIGN} :	0.35 MGD
Receiving Stream:	Fallen Ash Creek, thence to the White River
7Q10:	0.006 cfs (Annual, USGS StreamStats)

Critical Season Stream Hydraulics

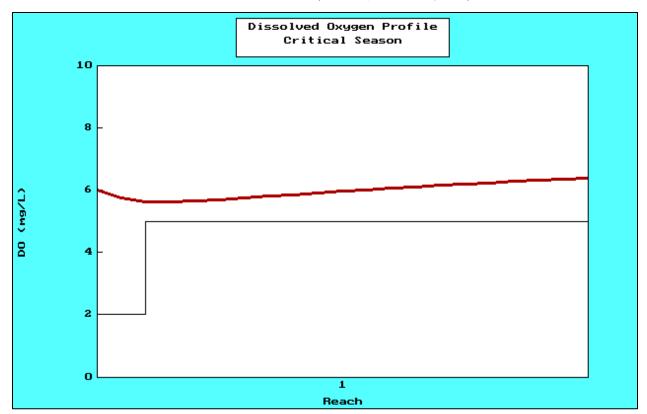
Quick Calculator	Critical S	eason S	Stream Hy	draulics					
0.006 Headwater in CFS			0.072323	0.5	0.567722	0.4	24.35498	0.1	Accum
				FPS		Feet		Feet	MGD
0.35 Discharger 1 in MGD		Reach	n 1 Velocity	0.054	Depth	0.446	Width	22.931	0.354

Primary Season Stream Hydraulics

Quick Calculator	Primary Se	eason	Stream Hy	draulics					
0.458 Headwater in CFS			0.072323	0.5	0.567722	0.4	24.35498	0.1	Accum
				FPS		Feet		Feet	MGD
0.35 Discharger 1 in MGD		Reach 1 Velocity		0.072	Depth	0.568	Width	24.354	0.646

Primary Season headwater (seasonal fishery flow, Rule 2) calculation:

1 cfs - (design flow in cfs)


1 cfs - (0.35 MGD in cfs)

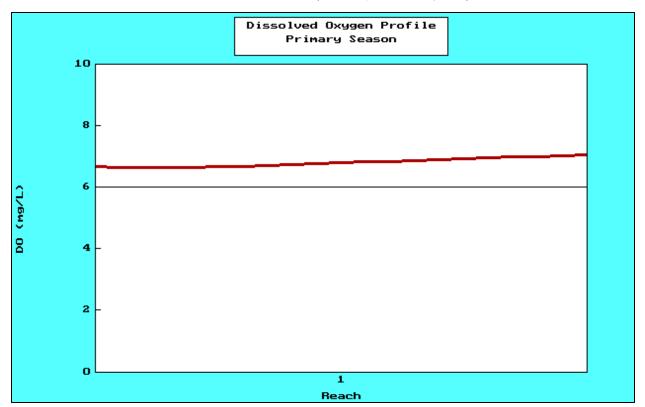
1 cfs - (0.542 cfs) = 0.458 cfs

Input Model Coefficients

Reach 1a/1b						
Coefficient – at 20° C	Input Value		Ju	ustification		
BOD _{ult.} /BOD ₅	2.3		EP	A Guidance		
$K_d(1/day)$	0.5		M	OA, rocky substra	ate	
K_n (1/day)	0.3		M	OA, rocky substra	ate	
SOD ($g/m^2/day$)	0.3 (0.51 @ 2	0.3 (0.51 @ 29°C) MC		OA, rocky substrate, $TSS = 15$		
$K_a (1/day)$	10.1 (Critical Season)		\mathbf{O}^{\prime}	O'Connor-Dobbins equation		
	8.1 (Primary	8.1 (Primary Season)		5 Connor-Dobonis equation		
	Critical Seasor	n (May-Oc	et)	Primary Season (Nov-Apr)		
	Reach 1a	Reach 1	b	Reach 1a	Reach 1b	
DO Standard	2 mg/l	2 mg/l 5 mg/l		6 mg/l		
Temperature Standard	29°0	29°C		22°C		
Stream Velocity	0.054	0.054 ft/s		0.072 ft/s		
Stream Depth	0.446	ft		0.568 ft		

Critical Season Model (21717_C.smp) 10/15/2/6 simulation (CBOD₅/TSS/NH₃/DO)

Critical Season		TABULAR MODEL	OUTPUT	
	River Mile	DO (mg/L)	BOD (mg∕L)	NH3 (mg/L)
1	1.00	6.00	22.77	1.98
2	0.95	5.73	21.82	1.91
3	0.90	5.63	20.91	1.85
4	0.85	5.62	20.03	1.79
5	0.80	5.64	19.19	1.73
6	0.75	5.69	18.39	1.67
- 7	0.70	5.74	17.62	1.61
8	0.65	5.80	16.88	1.56
9	0.60	5.85	16.17	1.51
10	0.55	5.90	15.50	1.46
11	0.50	5.96	14.85	1.41
12	0.45	6.01	14.23	1.36
13	0.40	6.06	13.63	1.32
14	0.35	6.10	13.06	1.27
15	0.30	6.15	12.51	1.23
16	0.25	6.19	11.99	1.19
17	0.20	6.23	11.49	1.15
18	0.15	6.27	11.01	1.11
19	0.10	6.31	10.54	1.07
20	0.05	6.35	10.10	1.04
21	-0.00	6.38	9.68	1.00


Critical Season	Run information screen		
Name of receiving s	ream	Fallen Ash Creek	
Number of discharge	(max = 10)	1	
Number of reaches	(max = 10)	1	
Reaeration type	(O, T, M)	O' Connor-Dobbins	
Run title for scree	display	Critical Season	
Graphics printer ty	e (HP, FX, LQ, None)	None	
Printed graph resol	tion (Low, Med, High)	None	

Critical Season	Upstream River Pa	Comments	
Flow	(cfs)	0.01	7Q10 = 0.006cfs
Temperature	(°C)	29.00	WQS Ozark High
Dissolved Oxygen	(mg/1)	5.75	75%sat ER Study
5-Day BOD	(mg/1)	1.00	assumed
Ult. CBOD / 5-Day BO	D	2.30	default
рН	(su)	7.00	assumed
Ammonia	(mg/1)	0.10	assumed
Alkalinity	(mg/1)	-0.00	
Upstream river mile		1.00	model length

Critical Season	Parameters for I)ischarge 1	Comments
Flow	(MGD)	0.35	design flow
Temperature	(°C)	29.00	WQS Ozark High
Dissolved Oxygen	(mg/1)	6.00	permit
5-Day BOD	(mg/1)	10.00	permit
Ult. CBOD / 5-Day BO	D	2.30	default
рН	(su)	7.00	default
Ammonia	(mg/1)	2.00	permit
Alkalinity	(mg/1)	-0.00	
Beginning of Reach N	ımber	1	
Name of Discharger		Flippin	

Critical Season	Parameters for 1	Parameters for Reach 1		
Length	(mile)	1.00	model length	
Velocity	(fps)	0.05	spreadsheet	
Slope	(ft∕mile)	-0.00		
Average Depth	(ft)	0.45	spreadsheet	
Temperature	(°C)	29.00	Calculated	
BOD Removal Rate	(1/day)	0.50	MDA, rocky sub	
NH3 Decay Rate	(1/day)	0.30	MDA, rocky sub	
Sediment Oxygen Demand	(g∕m²∕day)	0.51	k20=0.3(TSS=15)	
Photosynthesis/respira	tion (mg/L/day)	-0.00		

Primary Season Model (21717_P.smp) 10/15/9/6 simulation (CBOD₅/TSS/NH₃/DO)

Primary Season		TABULAR MODEL	OUTPUT		
	River Mile	DO (mg∕L)	BOD (mg∕L)	NH3 (mg∕L)	
1	1.00	6.65	13.50	4.92	
2	0.95	6.62	13.19	4.84	
3	0.90	6.61	12.89	4.77	
4 5	0.85	6.62	12.59	4.70	
5	0.80	6.63	12.30	4.63	
6	0.75	6.65	12.02	4.56	
- 7	0.70	6.67	11.74	4.50	
8	0.65	6.70	11.47	4.43	
9	0.60	6.72	11.21	4.36	
10	0.55	6.75	10.95	4.30	
11	0.50	6.78	10.70	4.24	
12	0.45	6.80	10.45	4.17	
13	0.40	6.83	10.21	4.11	
14	0.35	6.86	9.98	4.05	
15	0.30	6.89	9.75	3.99	
16	0.25	6.91	9.52	3.93	
17	0.20	6.94	9.30	3.88	
18	0.15	6.97	9.09	3.82	
19	0.10	6.99	8.88	3.76	
20	0.05	7.02	8.68	3.71	
21	-0.00	7.04	8.48	3.65	

Primary Season	Run information screen	
Name of receiving s	tream	Fallen Ash Creek
Number of discharge	s (max = 10)	1
Number of reaches	(max = 10)	1
Reaeration type	(O, T, M)	O'Connor-Dobbins
Run title for scree	n display	Primary Season
Graphics printer ty	pe (HP, FX, LQ, None)	None
Printed graph resol	ution (Low, Med, High)	None

Primary Season	Upstream River Pa	Upstream River Parameters	
Flow	(cfs)	0.46	seasonalf ishery
Temperature	(°C)	22.00	WQS Ozark High
Dissolved Oxygen	(mg/1)	7.41	85%sat ER Study
5-Day BOD	(mg/1)	1.00	assumed
Ult. CBOD / 5-Day BOI	D	2.30	default
рH	(su)	7.00	assumed
Ammonia	(mg/1)	0.10	assumed
Alkalinity	(mg/1)	-0.00	
Upstream river mile		1.00	model length

Primary Season	Parameters for D	ischarge 1	Comments	
Flow	(MGD)	0.35	design flow	
Temperature	(°C)	22.00	WQS Ozark High	
Dissolved Oxygen	(mg/1)	6.00	permit	
5-Day BOD	(mg/1)	10.00	permit	
Ult. CBOD / 5-Day BO	D	2.30	default	
рН	(su)	7.00	default	
Ammonia	(mg/1)	9.00	permit	
Alkalinity	(mg/1)	-0.00		
Beginning of Reach N	umber	1		
Name of Discharger		Flippin		

Primary Season Pa	rameters for I	Comments	
Length	(mile)	1.00	model length
Velocity	(fps)	0.07	spreadsheet
Slope	(ft∕mile)	-0.00	
Average Depth	(ft)	0.57	spreadsheet
Temperature	(°C)	22.00	Calculated
BOD Removal Rate	(1/day)	0.50	MDA, rocky sub
NH3 Decay Rate	(1∕day)	0.30	MDA, rocky sub
Sediment Oxygen Demand	(g/m²/day)	0.34	k20=0.3(TSS=15)
Photosynthesis/respiration	(mg/L/day)	-0.00	